JUN-26-1995 11:12 REFRINT MGMT

P.02/06

ARCO is an object architecture method. Tr suggests 4 new

wiy of organizing the differenr models concerning systems

and objects during the architccrural, analysis, and design

phases. Tts purpose is to render a global view about the infarmation sys-

1e:ns and its components. This has to contribute (at least in principle)

to the success gf applications’ portability and/or reuse of components.
The fundamentald of MARCO are:

* A parallel between systems and objects: Each system may be
viewed as un object. Euch object may be viewed as 4 system. At a
certain analysis level the internal structure of an object may be ig-
nored. Sume other times an object may be considered as a complex
structure of other objects.

* Service: Each system (each object) asks for services or renders ser-
vices 1o other objects.

A functional domain = a system = as object |

The development of a system analysis goes along three axces, cach
concerning a view of the system portability:
* more details about the process—semantic portabilicy
+ more details about the working covironment—application porta-
bility

* more details about the user presentation—presentation portability

OBJECTS AND SYSTEMS
An object is an entity characterized by the following features:
1. A fronticr: The object is clearly separated from its environment.

|
|
|
|
|
|

* The object may ask for services at an external object, The ren-
dered service may belong to a set of different possibilities. This
notion of service generalizes that of message.

3. Service points: The object is capabic of interacting with the exte-
rior through service points, a communication gate clustering the
related scrvices. A scrviee point may be of server or client type.

4. A memory: The object is able to preserve the “souvenir” of past ac-
tivities in atrributes. An ateribute preserves one of various stares.

Requasted,
service |
Reacoed

Figure 1. Object.

5. A suucture: An objeet may contain other smbedded abjecrs,

The object (Tig. 1) is aceessible exclusively through service points. One
can imagine that future (abject) operating systems could exploit this notion
directiy by providin i cach okyjrct with a protective cover forbidding any uc-

This fronter is impenetrable, with the exemption
of “service points” arens.
2. Services: T'he purposc of the object is to execute ser-
vices. The possible interactions are:
* Services arc provided by the object at the request
of an other object. The ohject responds with a
rendered service, one of a set of multiple possi-
bilities.

This urticle is desived from w quite extensive study conducted in
the last two years by the author, MARCO miny be used as 2
rethed suppﬂrr;ng process innovation.

Iont Curtiant
Sysoft, Paris

cess throngh areas other than the service points.

An object is defined by various models (scc Table 1
and Fig. 2), An object presents at the beginning an ex-
ternal arebitecture. It Is the vision that the world has
about the object. The essential pare of this architecture
is the presentation of the object services. With this vi-
sion only, onc can explore and decide upon the use or
reuse of the object. Then an objecr, if it is a complex
onc (and if it is interesting 1o scc how it is built), pre-
sents an (nfernal architecturs. ‘The embedded objects

18

May-June 1995

JUN-26-1935 11:13

REFRINT MGMT

P.03-06

AV

\4\) .utn:

CTURE

ARClIITECTURE

J VYL,
N 4 e S
- ONEXTERNAL QUIECK. -

INTERNAL ORIECY

v,

3

Objact A

Figure 2, Objuct mogels.

are analyzed first only from their external archicecture point of view.
In my view chis corppletes a *level analysis.”

Survics scenario mogel Prasents how the ser

Table 1,
Model Purpose
Services mode! Presents swrvices and service puints

Inherltanco mode! Presents the nheintancy ralationship of the cLject
Oynamic muds! Prasunts tha state change du 16 externsl eyenty
Structure model Presems th object structyre

Intarnal scenario modul Presents tiie intwrnal details of (e scenario execution

|
3 21¢ Juny, v:awed Irom autsidy ’
'

EXTERNAL SYSTEM (OBJECT) ARCHITECTURE
An object is first perceived by the views rendered by its exrernal ar-

chitecture. The models contuined in
* service model
* service scenario mode]
¢ dynamic model
¢ inheritance model

Service Mods|

¢ externyl archirecture are

"The service model is the most important one for deflaing an object in
MARCO. An objecr may receive a rervize request from an outside ob-
jeet. To this requested service it responds with a rendered service. The
vendered service belongs to s ser of possible responses. “I'he object may
also request a service from an external objectand get in rerurn the ren-

dered service rerurned by the called obj

ect.

The requested and rendered services are clustered in service poinss
(Fig. 3), the communication gate of the object. The service points may

be of clienr type (rcquests sent only) or

Vorume 2 Numser:

server type (requests received

Figure 3, Service paints.

only). The coupling beiween two objecrs implics the coupling be-
tween the respective client/server service points.

This model defines the service points, the services, the auributes,
and the starus of the object as 2 whole. A service request docs not al-
ways imply a rendered scrvice (e.g., a service requese miay indicare an
incernal stare change, without any returned scrvice). See the seetion
on the service scenario model for how to choese 1 possibility when «
rendered service helongs to a set of possibilities,

Service Scenario Mode!

A service seenario depicts the flow of the object's activitics. A scenario
i gered by a service request and it ends wich the rendered service.
The initiator of a scenario may be an external object or the studied ob-
ject (when itissues service requests to exterior objects), In cach case o
scenario follows the pattern of the service model:

* Seenario without rendered service

* Scenario with a rendered service: “I'he choice of the rendered ser-
vices depends on internal stafes, on services rendered by requests
addressed to external objects, or an internal processes,

~

Dynamic Model
An object preserves the memory of irs past actions. This memory
stores a state of the object, one between various alternutives, The state
analysis is pare of the behavior snalysis of the ohject, Two rechniques
may be used to represent this model: state diagram and stace ma-
chines. The transitions between the srates sre triggesed by events,
which are inbound service requests or inbound services rendered 1 pre-
vious outbound service requests.

The scrviee scerario model and the dynamic model describe the
behavior of rhe object.

19

11:14 REPRINT MGMT

JUN-26-19355

P.84,88

MARCO: 0BJECT ARCHITECTYRE METHOD

/
. (:7_5—1
)\\\.]u amy bjent [L
gy

Otjoct's exterior 3. An:mster object: This erj(:Cl gives
wcnr.. A uhique sense to the set of internal
and exterior objects,

MARCO recommends that 1he structure of

each cbyect (system) should not uelus

over 10 component cdjects. This is a

choice dictated by the will 1o ranage

the complexity of the projects by cre-
ating structures easy to understand and

g related to the application domain:

= ¢ Each compancene object may be

‘S ’ built at its rurp by a maxirmum 10

component objects, and so on.

* The object’s study may be dele-
gated easily to various team groups
through natural separation lings, The
overall system remains coherent.

J * This policy leads naturally to the

isolation of objects to lye rcused in
other projects, ”
The 10-abjects limit is 2 modular eri-

Master objact
1§
v
Figure 4,
£
Inheritance Modab

This model describes the object origins. The actual object is derived
from some ancestor. From the outside, the inheritance means adding
new service points with new service requests and renclered services for
the new object. From an intcrnal point of view, the inkeritance means
new internal objects with the respective service points,

INTERNAL SYSTEM (OBJECT) ARCHITECTURE

The model contained in the internal archirecrure are
* structure model
* internal scenario mode]
* external architecture of cach system component

Structure Model
This model studies the internal object strucrure, Te identifies the corm-
ponent objeets. The internal strucrurc may comprise a bunch of ob-
Jects. Depeuding on the size of the object, the internal objects may be
subsystems, funcrional domains, or elementary objects, “Te object

structure exhjbits three objects catcgories (sce Fig. 4);
L. Exterior (apparent) objects: Thesc objects gather the external vi-
sion of the object (the service points). They are alsn provided with
internal scrvice peints, used to interconncer themscl internally.

This organization corresponds o the conception
that an objeat is more than js component, parts,
A'special internaj object gives the exclusive Aavor;
lofthe systeitt and-discerns it o 'rhe'trivi:il‘sum_

lo_fintérq:_d‘hnd exterior objects, .. |

2. Internal objects: Thesc are related to the cxterior objects bur arc
invisible from the exterior,

20

|
|

|
|
I
|
|
|
|
|
|
|

_—

teria (an object collection is an object
in this sense). Tfrespected, this rulc al-
lows for complexity management by
maintaining the comprehension of the system. Ir makes easy the lo-
calization of future changes. The 10-ohject Limit is derived from the
famous “seven plus/minus rwo” figure representing a result of the re-
scarch concerning the vapacity of the hurnan braiy 1o grasp simulta-
neously varioug subjects.

This decomposition rule js applied ulso to the objects that build the
starting object (system), in iterations. At the end we have nondecom-
posable objects. This limi corresponds to the details judged Necessary
t2 understand and to build the application. When going from archj-
tecture to analysis and theq to design, some nondecomposable objects
at this stage may be splitin the morc detailcd stage, following the same
procedure: exzernal architecrure—internal archirecture.

Intemal Scenario Model

The internal scenario model corresponcds o the action flow of the com-
ponent objects to fulAll a service fequest. In comparison with the ser.
vice scenario model, the present model shows the interactions he-
tween the service points and the services of the component objects,
The 10-object limit allows for clarity in this Prescncarion,

External Architecturs of Companent Objects

The corponent objects are presented through their external architec-
ture, mainly the service model. The internal service model is huile by
taking into account the service points of the component objects

ARCHITECTURE PROCEEDINGS WITH MARCO

MARCO may be used to define 4 system and then to refine jes analy-
sis, 10 synthesize a System starting with some component blocks, or
both, If we define various steps in the activity of defining and imple-
MERting a syscem, we can see that in MARCO (he phases like archj-
tecture, analysis, and design are diffesentiared only by the detail de-

Mav-Jung 1994

JUN-26-1395

11:15 REPRINT MGMT

MARCO; OBJECT ARCHITECTURE METHOD

gree of the abjects. T'he procedure is the same: external ar-
chutecture/internal architecture, with the associated model,
a seamless procedure.

Generic System Analysis Process
MARCO suggests the application of the same scheme at
each step in the analysis process (Table 2 and Fig. 5).

Generic System Synthesis Process
The system urchitecrure is elaborated sturting with existing
objects. Euch component is provided with an external aur-
chitecture. If the component is complex (or interesting) it
may have also un internal architecture. The synthesis starts
by taking into account the external architccture of the ob-
jects constituting the building blacks of the future system.
These objects are provided with server and client ser-
vice points, The connection of the objects is feasible if the
scrvice points are compatible, When various elementary
objects ure connected in this way, the master object will
have to be defined 1o obrain in this way the final defini-

rion of a complex object (a subsystem). The service points

Lavet
-
. Otiazt - Lavel § {4rsiem;
Livel Vo Exivine achuGue
Loent2
Copid - Lve 7 r Ocaat+ Lovel2
i G rire

Lbjed « Lavee oyslem)

::: ;: Caiamal s vieciie .

Lover)
CBle - Lovel 1 (apaivn)

Inlemal arulvstury
Ouyses - Lavel 2 Cuped-Lovl2 [Conurowmz)
ATl AU & ety Erleral wehiasivre
Cyuet + L avel 2 Ocyoct - oval 2 Copet - Lava 3
00 werNIure it 004l wishiinelute
s "
. \ /
Cojeti - Lavel) f Gefwa-Lovui s GCuivel - Lavel 3 06t Love's r ezt - Lovel 3 3
Enovnal srcnwasiure Cdema: wiiluciura Eatumal $1E AL J Gamal setilicas L&uul ArEhiGLIuY J
[

of the subsystem are mainly the service points that re-
mained unmared during the construction phase, This sub<
system may be stored for future reuse in other projects. At

Figure 5.

Objact X

ospuA

$4rvias polals end frantier of w.n-]

Aow object X

Figure 6. Object construction.

Tobls 2.
First pags {first lavul)
Sacand puss (second leval)

ath puss (nth level)

Define ia system (object) vxturnal architecture (level 1 abject)
Dutine the internal urchitccture of the level 1 ubjcct

Detine the extarnat architecture of the tevel 2 objects,
cumponeats of the level 1 object

Dfine the internal urchitecture of the nih level objects

Define the external urchitecture of the n+ 1 level abjects,
cempanente of 1he nth Juvsl

Vorume 2 NUMBER 1

its Turn it may become a component in a higher level ar-
chitecture, where it is taken into account only through its
external architccrure.

Organizing for Error Processing
The normality of a system is its capacity to process services in a pre-
dictive way. An abnormal situation arrives when:
* The requested service is abnormal: The service request is off-limits,
* The rendered service is abnormal: To a service request, the ren-
dered services are incongruous (outside the expected norms).
* The rendered service is absent: To a service request there are no
rendered services after a reasonable waiting time.
An error manager must be present to intervene in such cases, This
manager is associated with the master object of the system and it
processes the error involving the components objects. The crror man-
ager is u service point Gf the master object. It may use the current ad-
ministrative services. Tt interacts with the lnternal objects and with the
exterior objects (agents).

A system has 1o provide for errors processing:

* Detect the errors: This situation arrives when a component objccts
dereets an internal abnormality, Tt will request a service of the cr-
ror mansger to inform it,

* Signal the abnormality: If a rendered service is off-limits, the ob-
jectthar reccives it hus to inform the related error munager through
a service request.

* Step in to reestablish the normal use casc. If it is not possible, the
error manager will call upon the higher error munager.

MARCO orgranizes the error management by identifving an error
ianager for each system {complex object).

JUN-26-1995 11:1S REPRINT MGMT

P.BE/DE

MARCO:
MARCO AND OTHER OBJECT-ORIENTED ANALYSIS METHODS

MARCO is essentially an organizing method using different models upon
the ohjccts and the systems, aimed at reducing the “details chaos.” The
MARCO models arc alveacly used in other methods, but we combine them
ina new kind of orgunization of system analysis and synthesis:

* The same approach is used at various analysis levels, from archi-
tecture to construction, an elegant way to manage the complexity.

* The distinction berween external and internal architecture pro-
vides for natural inregration of subsystems (object) in more com-
plex subsystems (objects). Tt allows one to take into account objects
only following their external, visible prescntation.

* The scrvice puints make the classification and the identification of
the abjects for future reusc easy. The constraints are easily recog-
nized: compatibility between associated client and service points.

* The limitation of componcnt object number helps the under-
standing and avoids 2 1o quick atomization of the analyses (there
15 no forest, only a group of 10 trees, wirh a lcader!).

*‘The proposed models are easy to understand. One may go up nat-
urally, to find the global scheme of the system, or go down ro sce
how it is donc. The object system archicceture is a powerful com-
munication means of improving the dindogue between the user, the
implementor, and the manager.

CONCLUSION

In this arlicle wg have prescnted the general Jines of our MARCO
methad. MARCO was developed in the fast two years, after we became
aware of the limitations of current methads. Qur customers find it quite
simple and clear. ltis easily understood by people atall levels: managers,
implementors, and clicnts. MARGO is presently used in bunking appli-
cations to help the definition of the nexr systems and to propose a seam -
less framework for architecture, analysis, and implementation.

lon A, Cartiant has beon a consulting engineer in communications
architectures for banks since 1984. A software author of various
communications packages with about 1000 licenses in Europe, he is
the owner of $YSOFT SA (Paris), o consulting company. Ho can be
contacted at Sysoft, 116, Ave. des Champs Elysées, 75008 Paris, France;
(v) 33147 20 65 34; () 331 47 23 44 52; email: Cornpuserve 100060,2404,

The Booeh Mcthod, cortinued from page §

may be a major funcional component in certain domains (such as
an clectronic funds transfer system) but nonexistent in others (such
as in a stand-alone compurer game).

Built on top of these facilities, we find the resources that manage
object storage and distribution, which callectively define the appli-
cation’s plumbing;

* persistent object store

* distributed object management
I trudirional terms, the persistent object store constitures an applica-
tion’s databasc, althoegh to some degree an object store is at a slightly
higher level of abstraction than a simple relational database because
an object store embodies the storage properties of a dutahasc together
with some of the common behavior thar characterizes these objects.
Distribured object munagement builds upon these services and lower
ones in the substrate to provide abstractions for the administration of
distributed as well as mobhile data in a networked environment, lor '

22

DBJECT ARCHITECTURE METHOD

ample, consider a chemical enineering application that encompasscs
aweb of computers scatrered about the manufacturing floor. Some of
this application’s data, such as information about the inventory of var-
ious chemicals used in the process and recipes for various substances to
be produced, may live on a specific node ihar azts as a eeniral server for
the system. Other kinds of data, such as the records about 2 particular
production run, may be physically scattered across the nerwork, yet ap-
pear as a logicul wholc to higher layers of the application.

Ultimately, the value of these twn layers is that they provide the
illusion to applications that objects live permancntly in a lurge, vir-
tual uddress space. In reality, an objcet lives on a particular processor
and may or may not be truly persistent. By granting this illusion, the
applications at the top of « system are ultimately much simpler, ¢s-
pecially in geographically distributed situations. At the next highest
level in the infrastructure, we find frameworks that cover domain-in-
dependent absteactions (such as various collection classes), applica-
tion objects (which handle common clicnt services such as printing
and clipboard management on workstations), and the GUT faciliies
(which provide the primitive abstractions for building userinterfaces):

* domain-independent framcwork .

* application cnvironment

* GUI/desktop environment
Just above this level of abstraction we find all the common abstrac-
tions that are peculiar to our given domain. Typically, these abstrac-
tions are packaged in two components;

* domain model

* domain-dependent framework
The domain model serves to capture all the classes of objects that form
the vocabulary of our problem domain. For mission-critical manage-
ment information systems, for example, this might include our spe-
cifie abstractions of things such as customers, orders, and producss,
together wirh the business rules that apply to these things. For rech-
nical applications such as telephone switching systems, this might in-
clude rhings such as lines, terminals, conversations, und features, (o-
gether with a specification of their behavior,

‘The domain-dependent framewnrk pravides all the common col-
laborations of thesc things that are specific to our domain. For exam-
ple, i certain management information systems, this framework might
include classcs that collaborate to carry out transactions; for switching
systems, this framework might provide classes thar define common fea
tures such as plain old telephone service (POTS) as well as more ad-
vanced features such as call waiting, call :nnfcrencing, and caller ID.

I an eatlier column, 1 explained how this canonical architecrure
adapts to real-time systems. Still, no macter what the application, it
is essential to preserve the architectural integrity of a sysicm. That goal
is generally achieved by building srchitectures that are constructed in
layers of abstraction, have a elexr separation of concerns among these
layers, and arc simple.

All well-strucrured O-Q architectures have clearly defined layers,
with each layer providing some coherent set of services through a well-
defined and controlled interface. Each Jayer builds upen cqually welle
defined and controlled facilities at lower levels of absrraction, Such ar-
chitectures arc ultimately simple because they reuse patterns at varjous
levels in the system, from idioms to mechanisms to frameworks. 4

May-]unt 1995

TOTAL F.O5

